Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

bonjour j'ai ces deux exercice que je n'arrive pas à faire svp

on veut démontrer que le polynôme ax²+bx+c (a≠0) peut toujours s'exprimer sous la forme a(x-α)² +β pour deux réels α et β bien choisis. l'expression a(x-α)² +β est appelée forme canonique du polynôme f. La quantité Δ =b²-4ac est appelée discriminant du polynôme f. on pose f(x)= ax²+bx+c.
1) Factoriser par a l'expression ax²+bx+c. Pourquoi est-ce possible ?
2) montrer que f(x)=a[(x+b/2a)²- b²-ac/4a²]


Sagot :

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.