Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

bonjour j'ai ces deux exercice que je n'arrive pas à faire svp

on veut démontrer que le polynôme ax²+bx+c (a≠0) peut toujours s'exprimer sous la forme a(x-α)² +β pour deux réels α et β bien choisis. l'expression a(x-α)² +β est appelée forme canonique du polynôme f. La quantité Δ =b²-4ac est appelée discriminant du polynôme f. on pose f(x)= ax²+bx+c.
1) Factoriser par a l'expression ax²+bx+c. Pourquoi est-ce possible ?
2) montrer que f(x)=a[(x+b/2a)²- b²-ac/4a²]


Sagot :

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.