Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Exercice 1:
Soit une fonction polynôme du second degré g : x -> ax^2 +bx+c définie sur [0; 1].
Dans un repère du plan, on note Cg la courbe de g. On souhaite déterminer les coefficients a, b et c tels que :
• Condition 1 : Cg passe par l'origine O du repère de coordonnées (0; 0);
• Condition 2 : Cg passe par le point A de coordonnées (1; 1);
• Condition 3 : la tangente à Cg au point A est parallèle à l'axe des abscisses.
1. Soit x un réel appartenant à l'intervalle [0; 1], donner l'expression de g (x).
2. Traduire les conditions 1, 2 et 3 par un système de trois équations dont le triplet (a,b,c) est solution.
3. Résoudre le système précédent.
Exercice 2 :Fonction bénéfice
Soit g la fonction définie sur l'intervalle [4; 20] par g (x) = (x-4)e^-0,25x+5 .
Partie A Etude de fonction
Etudier les variations de la fonction g et dresser son tableau de variation sur l'intervalle [4;20].
Partie B : Fonction Bénéfice
Une entreprise commercialise des centrales d'aspiration.
Le prix de revient d'une centrale est 400 €.
On suppose que le nombre d'acheteurs d'une centrale est donné par N = e^-0,25x+5, où x
est le prix de vente d'une centrale, exprimé en centaines d'euros.
1. Exprimer en fonction de x le bénéfice réalisé par l'entreprise, en centaines d'euros.
2. A quel prix l'entreprise doit-elle vendre une centrale pour réaliser un bénéfice maximal ? Quel est ce bénéfice maximal à l'euro prêt ?


Sagot :

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.