Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour,

On considère une feuille cartonnée de 17,5 cm de largeur et 28
cm de longueur. Pour former une boîte par pliage, on enlève dans
chaque angle un carré de côté x.
17.5
28
Objectif déterminer quelles doivent être les dimensions de la
boîte pour que son volume soit le plus grand possible.

1. A quel intervalle I appartiennent les valeurs possibles de x?

2. Exprimer en fonction de x la largeur, la longueur et la hauteur
de la boîte obtenue.
Déduisez-en alors que le volume, noté V(x), de cette boîte est :
V(x) = 4x³-91x² + 490x.

3. A l'aide de la calculatrice, reproduisez et complétez le tableau
de valeurs ci-dessous
x 0123456788,75
V(x)

4. Faire apparaitre la courbe sur l'écran de la calculatrice (on
notera sur la copie les réglages Xmin, Xmax, Ymin et Ymax
choisis).
Attention de bien faire les réglages pour être sûr de bien
visualiser l'ensemble de la courbe sur [0;8,75]

5. En s'aidant de la calculatrice, déterminer graphiquement
l'abscisse du point dont l'ordonnée est le maximum de la
fonction V

6. Déduire de ce que l'on vient de faire les dimensions (longueur,
largeur, hauteur) qu'il faut donner à la boîte pour que le
volume de la boîte soit le plus grand possible.

Sagot :

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.