Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Une population est confrontée à une épidémie pendant plusieurs mois.Le nombre de personnes malades, en milliers est modélisée par une fonction F définie sur [0;8] et dont on donne la représentation graphique.

La droite passant par les points A(2;96) et B(4;208) est tangente à la courbe au point A.


On admet que le nombre dérivé f'(t),pour t ε [0;8],représente la vitesse de propagation de l'épidémie au bout de t mois.

PARTIE B

On admet que la fonction représentée ci-dessus est définie par f(t)=-2t^3+12t^2+32t, avec T appartenant à [0;8].
1a) Résoudre, dans [0;8], l'équation f(t)=O
1b) Interpréter les résultats

2) A l'aide d'un logiciel de calculs formel, on a calculé la valeur de f'(t) pour tout réel tE[0;8] : -> f(t)=-2t^3+12t^2+32t
-> f'(t)=-6t^2+24t+32
a) Déterminer le nombre de semaines au bout desquelles la vitesse de propagation semble maximale
b) Au bout de combien de semaines semble-t-elle minimale? Quelle est alors la vitesse minimale de propagation?


c) Sur quelle période peut-on dire que la propagation de la maladie est en augmentation, ralentit et régresse? Justifier. Au bout de combien de mois peut-on parler d'inflexion de la vitesse de propagation?

Sagot :

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.