Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

1. Placer dans le plan complexe en Annexe-page4, les points A, B, C d'affixe :
ZA = -51, zB = 3 + 4i et zc = 5.
2. Déterminer les modules de ZA, ZB et zc.
3. En déduire que les points A, B, C appartiennent à un cercle dont on précisera le centre et le
rayon.
4. On considère les transformations du plan complexe f et g définies par :
f(z)=-z
et g(z) = z² - 1.
(a) Déterminer l'image du point A par f et par g.
(b) Résoudre l'équation f(z) = z puis décrire l'ensemble des points invariants de la
transformation f.
(c) De même, prouver que la transformation g a exactement deux points invariants dont on
précisera les affixes.


Sagot :

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.