2. On choisit dans le centre vétérinaire un échantillon de 20 chats au hasard. On admet que l'on peut assimiler
ce choix à un tirage avec remise.
On note X la variable aléatoire donnant le nombre de chats présentant un test positif dans l'échantillon choisi.
(a) Déterminer, en justifiant, la loi suivie par la variable aléatoire X.
(b) Calculer la probabilité qu'il y ait dans l'échantillon exactement 5 chats présentant un test positif.
(c) Calculer la probabilité qu'il y ait dans l'échantillon au plus 8 chats présentant un test positif.
(d) Déterminer l'espérance de la variable aléatoire X et interpréter le résultat dans le contexte de l'exercice.
3. Dans cette question, on choisit un échantillon de n chats dans le centre, qu'on assimile encore à un tirage avec
remise. On note p, la probabilité qu'il y ait au moins un chat présentant un test positif dans cet échantillon.
(a) Montrer que p₁ = 1-0,55".
(b)
Décrire le rôle du programme ci-contre
écrit en langage Python, dans lequel la
variable n est un entier naturel et la va-
riable P un nombre réel.
def seuil():
n=0
P=0
while P<0,99:
n=n+1
P=1-0,55 * *n
return n
(c) Déterminer, en précisant la méthode employée, la valeur renvoyée par ce programme.