Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Nombre d'or et suite de Fibonacci

Bonjour, j’ai un exercice à effectuer mais je suis complètement bloqué j’espère que vous pourrez m’aider :)

1. Résoudre l'équation (E) x² = x + 1
On note A = 1+√5 /2 et B = 1 - √5 /2 les deux solutions de l'équation. (a est le nombre d'or)

2. En utilisant l'équation (E) Montrer que pour tout n appartient au entier naturel N A n+2 = A n+1 + A n
et B n+2 = B n+1 + Bn
3. On définit la suite (Fn) appartenant au entier naturel N tel que
F₁ = 1/√5 (A n - B n)
a. Calculer Fo, F₁, F2, F3 et vérifier que F₂ = F₁ + Fo et F3 = F₂ + F₁
b. En utilisant la question 2 montrer que pour tout n E N Fn+2 = Fn+1 + Fn
c. En déduire par un calcul simple F4, F5, F6
4. La suite (F) est appelée la suite de Fibonacci, effectuer une recherche sur l'histoire de cette suite en Inde et en Italie.

Merci beaucoup ! ;)


Sagot :

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.