Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

On dispose d'une ficelle de longueur 1 mètre que l'on coupe en deux. Avec un des morceaux, on
forme un carré et avec l'autre on forme un rectangle dont la longueur est le double de sa largeur.

Objectif: on se propose de déterminer où couper la ficelle de sorte que la somme des aires du
carré et du rectangle soit minimale. On note x la longueur de la ficelle utilisée pour le carré.

1) Exprimer l'aire du carré en fonction de x.

2) Montrer que la largeur du rectangle est 1-x sur 6

3) En déduire que l'aire du rectangle est 1/18(1-x)².

4) Déterminer alors le polynôme du second degré f correspondant à la somme des aires du carré et
du rectangle.

5) Écrire la fonction f obtenue sous forme canonique et conclure.


Sagot :

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.