Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

On dispose d'une ficelle de longueur 1 mètre que l'on coupe en deux. Avec un des morceaux, on
forme un carré et avec l'autre on forme un rectangle dont la longueur est le double de sa largeur.

Objectif: on se propose de déterminer où couper la ficelle de sorte que la somme des aires du
carré et du rectangle soit minimale. On note x la longueur de la ficelle utilisée pour le carré.

1) Exprimer l'aire du carré en fonction de x.

2) Montrer que la largeur du rectangle est 1-x sur 6

3) En déduire que l'aire du rectangle est 1/18(1-x)².

4) Déterminer alors le polynôme du second degré f correspondant à la somme des aires du carré et
du rectangle.

5) Écrire la fonction f obtenue sous forme canonique et conclure.


Sagot :

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.