Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.


Déterminer tous les entiers n solutions de l'inéquation: √n-√100 < 1.
Détailler le raisonnement.

Sagot :

Bonjour, voici la réponse à ton exercice :

[tex]Pour \:n\in \mathbb{R}^+[/tex],

[tex]\sqrt{n} - \sqrt{100} < 1[/tex]

⇔ [tex]\sqrt{n} - \sqrt{10^2} < 1[/tex]

⇔ [tex]\sqrt{n} - 10 < 1[/tex]

⇔ [tex]\sqrt{n} - 10 + 10 < 1 + 10[/tex]

⇔ [tex]\sqrt{n} < 11[/tex]

Dans ces cas-là, pour se débarrasser de la racine, on applique de chaque côté un carré, qui évidemment, annule la racine carrée

⇔ [tex](\sqrt{n})^2 < 11^2[/tex]

⇔ [tex]n < 121[/tex]

En espérant t'avoir aidé au maximum !

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.