Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

On considère un triangle ABC quelconque. On veut démontrer que les trois médiatrices dans le triangle ABC sont concourantes et que leur point d'intersection est le centre du cercle circonscrit au triangle. On appelle m, la médiatrice du segment [AB], m, la médiatrice du segment [AC] et m, la médiatrice du segment [BC]. On pourra faire une figure pour se faire une idée. 1. Démontrer que m, et m, ne sont pas parallèles.
2. On appelle O le point d'intersection de m, et m₂. a. Puisque O appartient à m,, quelle relation. existe-t-il entre les longueurs OA et OB ? b. De même, comparer les longueurs OA et OC.
3.
a. Que peut-on en déduire sur les longueurs OB et OC ?
b. Le point O appartient-il alors à m₂ ?
4. Quelle interprétation géométrique peut-on donner à la comparaison des trois longueurs OA, OB et OC ?
5. Conclure en résumant les propriétés démontrées.​


Sagot :