Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.


La quantité annuelle de pluie dans une certaine région, exprimée en cm/m², est une variable
aléatoire qui suit la loi normale N(140; 100), d'espérance m = 140 et de variance o² = 100.
1. Déterminer la probabilité P[X ≥ 150], arrondie à la quatrième décimale.
2. On désigne par X₁, X2, X3 et X4 les quantités annuelles de pluie dans cette région sur
une période de quatre ans. Les quatre variables aléatoires X; sont indépendantes et
suivent toutes la même loi normale (140; 100).
On rappelle que S = X₁ + X2 + X3 + X4 suit la loi normale N(E(S); V(S)).
(a) Déterminer l'espérance E(S) et la variance V(S).
(b) Déterminer le réel b, arrondi à la deuxième décimale, tel que P[S≤ b] = 0,975.
(c) Déterminer le réel a, arrondi à la deuxième décimale, tel que P[a ≤S] = 0,975.
(d) Déterminer la probabilité P[a ≤ S≤ b], arrondie à la quatrième décimale.


Sagot :

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.