Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour, je vous ai mis en PJ mon exercice de maths

J'ai réussi toutes les questions pour l'instant je pense jusqu'à la 2. b)
Pour montrer que Sn <= à ça j'ai raisonné ainsi, mais je ne sais pas si c'est correct:

un <= (3/4)^n-5 * u5 <=> un <= (3/4)^n * (3/4)^-5 * u5

Et donc, u5 <= (3/4)^5 * (3/4)^-5 * u5 <= u5 * 1
u6 <= (3/4)^6 * (3/4)^-5 * u5 <= u5 * 3/4
u7 <= (3/4)^7 * (3/4)^-5 * u5 <= u5 * (3/4)^2
...
un <= (3/4)^n-5 * u5

D'où Sn = u5 + u6 + u7 + ... +un <=> Sn <= u5 [1 + 3/4 + (3/4)^2 + ... + (3/4)^n-5]

Mais est ce qu'il manque pas quelque chose dans ma justification ? Dois-je démontrer préalablement que un est décroissante, ou bien citer une propriété démontrée dans une question précédente ?

Merci par avance


Bonjour Je Vous Ai Mis En PJ Mon Exercice De Maths Jai Réussi Toutes Les Questions Pour Linstant Je Pense Jusquà La 2 B Pour Montrer Que Sn Lt À Ça Jai Raisonné class=

Sagot :

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.