Dans tout l'exercice l'unité de longueur est le mm. On lance une fléchette sur une plaque carrée sur laquelle fi-¦ gure une cible circulaire (en gris sur la figure), Si la pointe i de la fléchette est sur le bord de la cible, on considère que la cible n'est pas atteinte. On considère que cette expérience est aléatoire et l'on s'in- téresse à la probabilité que la fléchette atteigne la cible. - - - -100 La longueur du côté de la plaque carrée est 200. Le rayon de la cible est 100. La fléchette est représentée par le point F de coordon- nées (x; y) où x et y sont des nombres aléatoires com- pris entre -100 et 100. ---100 Cibler--50- -50 0 -50 L----L-100 1 50 1. Dans l'exemple ci-dessus, la fléchette F est située au point de coordonnées (72; 54). Montrer que la distance OF, entre la fléchette et l'origine du repère est 90. H 100 2. D'une façon générale, quel nombre ne doit pas dépasser la distance OF pour que la fléchette atteigne la cible? 3. On réalise un programme qui simule plusieurs fois le lancer de cette fléchette sur la plaque carrée et qui compte le nombre de lancers atteignant la cible. Le programmeur a créé trois variables nommées : carré de OF, distance et score.