Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour à tous, merci de me donner des réponses au plus vite, c'est très important, je vous en serai reconnaissante !

 

PARTIE A : Résolution d'une équation du troisième degrès.

On considère la fonction f définie sur R par : f (x) = x^3+3x-4

 

1) Démontrer que la fonction f est strictement croissante dur R.

2) Tracer la courbe C f représentant la fonction f dans un repère orthogonal.

3) A l'aide du graphique, déterminer les coordonnées du point A d'intersection de C f avec l'axe des abscisses, puis confirmé le résultat à l'aide d'un calcul.

4) En déduire que l'équation f (x) = 0 admet une unique solution sur R que l'on précisera.

 

PARTIE B : 

Définition : doit x E R, [tex]y = \sqrt[3]{x} [/tex] est l'unique nombre tel que y^3=x

Le but de cette partie est d'établir l'égalité suivante : [tex]\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1[/tex]

 

1) On pose [tex]\alpha[/tex] =  [tex]\sqrt[3]{2+\sqrt{5}} et \beta = \sqrt[3]{2-\sqrt{5}}

     a) Calculer [tex]\alpha^{3}+\beta^{3}[/tex]

     b) Calculer \[tex]\alpha \beta[/tex]

2) Démontrer que, pour tous réels A et B, on a :

[tex](A^{3}+B^{3})=(A+B)(A^{2}-AB+B^{2})[/tex]

puis que [tex](A^{3}+B^{3})=(A+B)((A+B)^{2}-3AB)[/tex]

3) En déduire, que le réel \[tex]\alpha+\beta[/tex] est solution de l'équation [tex]x^{3}+3x-4=0[/tex]

4) A l'aide de la partie B, conclure.

Sagot :

o punaise pas mon niveau dutout j'ai pas vut sa au college

 

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.