Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

K(x) = 5/x^2. On calcule le taux de variation entre 1 et 1+h. Ainsi je trouve t(h) = (-5h-10)/(1+h)^2.
L’énoncé de mon exo est : montrez que k est dérivable en 1. Donc je calcule, avec h—>0, la limite lim( (-5h-10)/(1+h)^2 ) = -10.
Mais comment puis je démontrer que k est dérivable en 1 si la limite est -10, et que ça ne passe pas par 1.

Aussi, k’(1) = -10 ici ??
Merci

Sagot :

caylus

Réponse :

Bonsoir,

Explications étape par étape :

Montrez que k est dérivable en 1.

[tex]f(x)=\dfrac{5}{x^2} \\\\t(x)=\dfrac{\dfrac{5}{(x+h)^2} -\dfrac{5}{x^2} }{h} \\\\=\dfrac{5}{h} *\dfrac{x^2-(x+h)^2}{x^2*(1+h)^2} \\\\=\dfrac{5}{h} *\dfrac{x^2-x^2-2hx-h^2}{x^2*(x+h)^2} \\\\=\dfrac{-5*(2x+h)}{x^2*(x+h)^2} \\\\t(x)=\dfrac{-5*(2x+h)}{x^2*(x+h)^2} \\\\\displaystyle f'(x)= \lim_{n \to \infty} \dfrac{-5*(2x+h)}{x^2*(x+h)^2} =\dfrac{-10x}{x^4} =\dfrac{-10}{x^3} \\[/tex]

La limite existe, donc la fonction est dérivable.

Rem: [tex]f'(1)=\dfrac{-10}{1^3} =-10[/tex]

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.