Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

22
83 Caractérisation vectorielle du centre
de gravité d'un triangle
Soit ABC un triangle quelconque.
On appelle A, B, C les milieux respectifs des côtés
[BC], [AC] et (AB).
1) a) Démontrer que: 2AA = AB+AC.
b) Écrire des égalités semblables pour les vecteurs
BB et CC.
c) En déduire que: AA+BB'+CC = 0.
2) Soit G le centre de gravité du triangle ABC.
a) Justifier brièvement les égalités :
AG-AA: BG-88: CG =CC².
b) Démontrer que: GA+GB+GC = 6.
3) Soit M un point du plan tel que : MA+MB+MC = 0.
a) Démontrer que: 3MA+ +AB+AC = 6.
b) En déduire que : AM - AA'.
c) Que peut-on dire alors du point M?
d) Quelle équivalence a-t-on démontrée ?
L'égalité GA GB GC-6 est une caractérisation vecto-
rielle du centre de gravité d'un triangle ABC.


22 83 Caractérisation Vectorielle Du Centre De Gravité Dun Triangle Soit ABC Un Triangle Quelconque On Appelle A B C Les Milieux Respectifs Des Côtés BC AC Et A class=

Sagot :

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.