Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Dominique arrose son jardin avec l’eau de la rivière qui traverse sa propriété.
On cherche à minimiser la distance maison – rivière - jardin.
Elle part du point A de la maison pour arriver au point E du jardin en passant par un point C situé au bord de la rivière.
Les distances sont indiquées sur le schéma.
Plusieurs chemins existent. L’un d’entre eux est schématisé en pointillés.
On note x la variable repérée sur le dessin ci-dessous et on note f(x) la distance à minimiser en fonction de x (représentée en pointillés sur le dessin)

1. Donner l’intervalle sur lequel est défini x ?
2. Montrer que la distance à minimiser s'exprime par :
f(x) = √x² + 16 + √x² - 12x + 40
3. Compléter le tableau de valeurs suivant de la fonction
On arrondira les valeurs à 10-2 près (vous pouvez utiliser la calculatrice numworks).
x : 0 / 1 / 2 / 2.5 / 3 / 3.5 / 4 / 4.5 / 5 / 6
f(x) : partie à competer
4. Effectuer la représentation de cette fonction en prenant pour unités : 1 cm ou le carreau pour chaque unité sur chaque axe.
5. lire graphiquement une valeur approchée près de la valeur de x qui minimise la distance maison – rivière - jardin. Combien vaut alors cette distance arrondie à 10¹ près ?

Merci beaucoup !

Sagot :

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.