Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

On se donne un polynôme du troisième degré P(x)=ax^3+bx^2+cx+d, on suppose que α est une solution évidente de l’équation
P(x)=0
1/démontrer que pout tout x réel on a P(x)=P(x)-P(α)
2/En déduire que pour tout x réel P(x)-P(α)=a(x^3-α^3 )+b(x^2-α^2 )+c(x-α)
3/Démontrer que pour tout x réel on a x^3-α^3=(x-α)(x^2+αx+α^2)
4/En déduire une factorisation de P(x)-P(α) et donc de P(x)
5/En déduire le résultat général suivant Si P est un polynôme de degré 3, et si α est un réel alors
P(α)=0 si et seulement si P est factorisable par x-α et un polynôme de degré 2

Sagot :

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.