Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.


.


Exercice 6 (***): Mouvement parabolique
L'espace est muni d'un repère cartésien (0,u,, uy). Le point O est situé au niveau du sol, le
vecteur u, est vertical dirigé vers le haut et le vecteur u, horizontal dirigé vers la droite. On
considère une boule de pétanque assimilée à un point matériel M en mouvement. Durant le
mouvement, l'accélération de M est constante : ä -au avec a > 0. A l'instant initial t = 0, le
point M est situé à l'origine O et a une vitesse initiale vo vo(cos a u, + sina uy) Vo > 0.
On cherche l'équation de la trajectoire en fonction de a, v, et a
=
o Déterminer l'expression du vecteur vitesse (t) du point M sans oublier de tenir
compte des conditions initiales.
o
En déduire les équations horaires du mouvement x(t) et y(t).
o En déduire l'équation de la trajectoire
Déterminez le tableau de variations de y(t) sur [0, +∞]. Déterminer les coordonnées du point
d'altitude maximale (Xm. Ym) en fonction de vo et a..
Faire l'application numérique pour a = 30° vo = 5m/s et a, = = 9.8 m.s-².
Rappel :2 cos a sin a = sin(2a)
Tracer l'allure de la trajectoire
Quelle est la valeur de l'angle a qui permet de maximiser la distance parcourue par la boule
de pétanque avant de toucher le sol ?


Sagot :

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.