Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour,

Je suis coincé à la question 2, pouvez vous m'aider svp.

L'énoncé :

Un créateur de parfum décide de commercialiser son nouveau produit dans des flacons ayant la forme suivante : (voir photo).
Cette forme, appelée paraboloïde, est obtenue par rotation de la parabole d'équation y = x² autour de l'axe des ordonnées d'un repère orthonormé (unité : 1 cm).
Le créateur souhaite calculer le volume v, en cm³, de ce flacon.

1. un cas particulier: n = 4
Pour estimer la valeur de v, le créateur découpe l'intervalle [0;4] de l'axe des ordonnées en quatre segments de même longueur. il obtient alors des rectangles « inté- -2-1 0 rieurs » et « extérieurs » à la parabole, puis, par rotation autour de l'axe des ordonnées, des cylindres.

a) justifier que les rayons des cylindres blancs sont respectivement égaux à √4, √3, √2 et 1.

b) montrer que
[tex]6\pi≤ v≤ 10\pi[/tex]
2. cas général :n quelconque
pour n, nombre entier naturel non nul, on découpe l'in- tervalle [0; 4] en n segments de même longueur afin de généraliser la construction précédente. on note un (resp. vn) la somme des aires des cylindres << intérieurs »> (resp. « extérieurs »). = 1

a) montrer que, pour tout entier naturel n

Un = 16pi/n au carré (1+2+3+...+ (n − 1))
et
Vn = 16pi / n au carré (1+2+3+...+ n).

b) en déduire que pour tout entier naturel n>1
voir photo

c) quel est le volume v du flacon?

merci d'avance !!​

BonjourJe Suis Coincé À La Question 2 Pouvez Vous Maider SvpLénoncé Un Créateur De Parfum Décide De Commercialiser Son Nouveau Produit Dans Des Flacons Ayant La class=

Sagot :

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.