Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
Réponse :
Bonjour,
Explications étape par étape :
1. Démontrer que A < 1 < B
[tex]A=\dfrac{n}{n+1} \\\\B=\dfrac{n+1}{n} \\\\n < n+1\ \Longrightarrow \ \\\\\blacktriangleright\ \dfrac{n}{n+1} < 1 \Longrightarrow \ A < 1 \\\\\blacktriangleright\ 1 < \dfrac{n+1}{n} \Longrightarrow \ 1 < B \\\\\\\Longrightarrow \ \boxed{A < 1 < B}\\\\\\[/tex]
a)
pour E2: 1-C2
pour F2: D2-1
b)
Conjecture: 1-A < B-1
c)
[tex]1-A=1-\dfrac{n}{n+1} =\dfrac{n+1-n}{n+1}=\dfrac{1}{n+1}\\\\B-1=\dfrac{n+1}{n}-1=\dfrac{n+1-n}{n}=\dfrac{1}{n}\\\\n < n+1\\\frac{1}{n+1} < \frac{1}{n} \\-\frac{1}{n+1} > -\frac{1}{n} \\\\1-\frac{1}{n+1} > 1-\frac{1}{n} \\\\1-\frac{1}{n} < 1-\frac{1}{n+1} \\\\\\\boxed{1-A < B-1}\\[/tex]
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.