Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
Bonjour,
1. a) ABCD étant un carré, on a (AB) ⊥ (AC) et AB = AD
(A ; B ; D) est donc un repère orthonormé.
b) A(0 ; 0) ; B(1 ; 0) ; C(1 ; 1) ; D(0 ; 1)
E est le symétrique de A par rapport à B. B est donc le milieu de [AE]
D'où 2xB = xA + xE et 2yB = yA + yE
⇔ xE = 2xB - xA = 2 et yE = 2yB - yA = 0
Soit E(2 ; 0)
I est le milieu de [BC}, on a donc :
xI = (xB + xC) / 2 = 1 et yI = (yB + yC) / 2 = ½
Soit I(1 ; ½)
c) On note que (xD + xE)/2 = 1 = xI et que (yD + yE)/2 = ½ = yI
On en conclut que I est le milieu de [DE]
2.a) E ∈ (AB) et (AB) // (CD) ⇒ (BE)//(CD)
De plus, E est le symétrique de A par rapport à B ⇒ AB = BE
D'autre part, (ABCD) est un carré ⇒ AB = CD
On en déduit que (BE)//(CD) et BE = CD
Cela nous permet de conclure que DBEC est un parallélogramme.
b) Les diagonales d'un parallélogramme se coupent en leur milieu.
I est donc à la fois le milieu de [BC] et de [DE].
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.