Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonjour j’ai vraiment besoin d’aide pour cet exercice ,merci d’avance .

Exercice 2:
Préambule:
On considère le nombre suivant : 0,252525..., de sorte que l'écriture décimale est infinie avec une
répétition des chiffres 2 et 5.
On dit que 25 est une période de l'écriture décimale de ce nombre.
On remarque que si on pose x = 0,252525... on obtient que 100 x-25 = x.
25
En particulier 99 x = 25 et donc x==
99
25
99
Bilan: 0,252525... e Qet 0,252525...
1. Déterminer une écriture fractionnaire de 0,987987 ..., où 987 est une période de l'écriture décimale
de ce nombre.
2. Objectif: On souhaite montrer que 5,321414..., où 14 est une période de l'écriture décimale de ce
nombre, est un nombre rationnel et déterminer une écriture sous forme de fraction irréductible.
532
a) Déterminer x tel que 5,321414...
x
100
100*
b) Déterminer une écriture fractionnaire de ce nombre x.
c) En déduire le fait que 5,321414... est un nombre rationnel et donner son écriture sous forme de
fraction irréductible.
+

Sagot :

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.