Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour j’ai un devoir maison à rendre pour demain pouvez-vous m’aidez svp.

Exercice 1) Soit (un) la suite définie par uo = 1/2 et, pour tout entier n. Un+1 = Un+1 / Un+2
Montrer que, pour tout entier n, 0 < un < 1.

Exercice 2) Soit (Un) la suite définie par uo = -3 et, pour tout entier n , Un+1 = 5 - 4Un.
Montrer que, pour tout entier n, Un = (-4)^(n+1) + 1.

Exercice 3) Déterminer dans chacun des cas la limite de la suite (Un) :
a) 2n+1 /n+325
b) 2n^2 - 3n+2 / 1-n
c) 4n^2 + 1 / n(2n+1)
d) 3/ 2rac(n+17)
e) rac(3n+1) / 3+ rac(n)

Exercice 4) Soit les suites (un) et (Vn) définies pour tout entier n par : u0 = 16 et v0 = 5 et {Un+1= 3Un+2Vn /5
{Vn+1= Un+Vn /2

1) Soit la suite (Wn) définie pour tout entier n par Wn = Un-Vn

a) Démontrer que la suite (Wn) est une suite géométrique de raison 0,1 et calculer son premier terme.

b) En déduire Wn en fonction de n.

2) Soit la suite (Cn) définie pour tout entier n par cn = 5Un + 4Vn
Démontrer que la suite (Cn) est constante c'est-à-dire que Cn=Cn+1

3) En déduire Un et Vn en fonction de n


Sagot :

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.