Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour j’ai un devoir maison à rendre pour demain pouvez-vous m’aidez svp.

Exercice 1) Soit (un) la suite définie par uo = 1/2 et, pour tout entier n. Un+1 = Un+1 / Un+2
Montrer que, pour tout entier n, 0 < un < 1.

Exercice 2) Soit (Un) la suite définie par uo = -3 et, pour tout entier n , Un+1 = 5 - 4Un.
Montrer que, pour tout entier n, Un = (-4)^(n+1) + 1.

Exercice 3) Déterminer dans chacun des cas la limite de la suite (Un) :
a) 2n+1 /n+325
b) 2n^2 - 3n+2 / 1-n
c) 4n^2 + 1 / n(2n+1)
d) 3/ 2rac(n+17)
e) rac(3n+1) / 3+ rac(n)

Exercice 4) Soit les suites (un) et (Vn) définies pour tout entier n par : u0 = 16 et v0 = 5 et {Un+1= 3Un+2Vn /5
{Vn+1= Un+Vn /2

1) Soit la suite (Wn) définie pour tout entier n par Wn = Un-Vn

a) Démontrer que la suite (Wn) est une suite géométrique de raison 0,1 et calculer son premier terme.

b) En déduire Wn en fonction de n.

2) Soit la suite (Cn) définie pour tout entier n par cn = 5Un + 4Vn
Démontrer que la suite (Cn) est constante c'est-à-dire que Cn=Cn+1

3) En déduire Un et Vn en fonction de n


Sagot :

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.