Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Méthode:
Pour montrer qu'une fonction est croissante sur un intervalle I, il faut partir de deux réels a et b de cet intervalle I tel que a < b.
Après avoir travaillé sur l'inégalité il faut arriver à montrer
que f(a) < f (b)

Exemple:
Montrons que f(x) = 2x² est croissante sur [0; +∞[ :
Soit a et b deux réels appartenant à l'intervalle [0; +∞[ tel que a < b.
<=> a < b <=> a² < b² car la fonction carrée est croissante sur [0; +∞[
<=> 2a <2b = f(a) < f (b)
Donc f est croissante sur [0; + ∞[

Exercice 1: (5 pts)
1) Soit la fonction f définie sur R par f(x) = -4x² + 1. Montrer que f est croissante sur ] - ∞; 0].

2) Soit la fonction f définie sur R par f(x) = 4(x + 2)² -3. Montrer que g est décroissante sur ] -∞; -2]


Méthode Pour Montrer Quune Fonction Est Croissante Sur Un Intervalle I Il Faut Partir De Deux Réels A Et B De Cet Intervalle I Tel Que A Lt B Après Avoir Travai class=

Sagot :

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.