Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Exercice 2 (9 points)
On considère la suite (un) définie par u0=
et telle que pour tout entier naturel n:
3un
1+2un
Un+1 =
1. a. Calculer u₁ et ₂.
b. Démontrer, par récurrence, que pour tout entier naturel , 0 < un
2. On admet que un < 1 pour tout entier naturel n.
Montrer que la suite (un) est croissante.
Un
- Un
a. Montrer que la suite (v₁) est une suite géométrique de raison 3.
b. Exprimer, pour tout entier naturel n, vn, en fonction de n.
3n
3n+1
3. Soit (vn) la suite définie, pour tout entier naturel , par un
=
c. En déduire que, pour tout entier naturel n, un =


Sagot :

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.