Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Je ne comprends pas l'exercice suivant :

Soit la fonction f définie sur [0; 1] par f(x) On considère la suite (un) définie par uo = 0 et pour tout entier naturel n, un+1 = f(un).
1. Utiliser la calculatrice pour afficher le graphique de la suite (un).
2. Quelle conjecture peut-on émettre concernant le sens de variation et la convergence de la suite (un)?
3. Étudiez les variations de f et déduire que pour tout x € [0; 1], 0≤ f(x) ≤ 1.
4. Montrer que pour tout entier n € N, 0≤ un ≤ 1.
5. Montrer que la suite (un) est strictement croissante.
6. (a) Déduire que la suite converge vers une limite l.
(b) Montrer que l = f(l).
(c) Déterminer l.
(d) Pour tout nombre réel ε > 0, on souhaite déterminer le rang N à partir duquel la distance entre un et l est strictement inférieure à e. Construire un algorithme permettant de résoudre ce problème.
(e) Programmer, puis déterminer le rang N associé à
i. ε = 10-³.
ii. ε = 10-6.

Merci d'avance pour la réponse !​

Sagot :

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.