Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour
J’aurais besoin de votre aide pour l’exercice numéro 99 svp car je ne comprends pas


Bonjour Jaurais Besoin De Votre Aide Pour Lexercice Numéro 99 Svp Car Je Ne Comprends Pas class=

Sagot :

Bonjour !

1. Dans cette question, tu dois dire quelle valeur minimale que peut prendre [tex](-1)^{n}[/tex]. Lorsque [tex]n[/tex] est pair, cette valeur est 1 et quand [tex]n[/tex] est impair cette valeur est -1.

Donc [tex]-1\leq (-1)^{n}\leq 1[/tex].

2. On doit utiliser le théorème d'encadrement pour répondre à cette question.

[tex]-1\leq (-1)^{n}\leq 1\\-2\leq 2(-1)^{n}\leq 2\\\frac{-2}{n} \leq \frac{2(-1)^{n}}{n} \leq \frac{2}{n} \\\frac{-2}{n}+3 \leq \frac{2(-1)^{n}}{n} +3\leq \frac{2}{n} +3[/tex]

Or [tex]\lim_{n \to \infty} \frac{-2}{n} = \lim_{n \to \infty} \frac{2}{n} =0[/tex] donc [tex]\lim_{n \to \infty} \frac{-2}{n} +3 = \lim_{n \to \infty} \frac{-2}{n} +3 =3[/tex].

D'après le théorème d'encadrement, [tex]\lim_{n \to \infty} u_n =3[/tex].

Bonne journée ! ;-)

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.