Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

bonjour jai besoin d'aide pour cette question.
pouvez vous m'aider ?​​


Bonjour Jai Besoin Daide Pour Cette Question Pouvez Vous Maider class=

Sagot :

Tenurf

Bonjour,

Dire que la courbe représentative de f dans un repère n'admet pas de tangente horizontale, revient à dire que la dérivée de f ne s'annule pas sur le domaine de définition de f.

Nous devons donc trouver les k tel que f'(x) soit toujours différent de 0

Prenons x réel

[tex]f'(x)=3x^2+2kx+1=0[/tex]

[tex]\Delta=4(k^2-3)=4(k-\sqrt{3})(k+\sqrt{3})[/tex]

Le discriminant est strictement négatif pour x entre les racines

donc l'ensemble de tous les réels k possibles pour que la courbe représentative de f dans un repère n'admette pas de tangente horizontale est

[tex]]-\sqrt{3};\sqrt{3}[[/tex]

Merci

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.