Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

démontrer que (n²+n) est pair​

Sagot :

Si n est pair (c'est-à-dire qu'il existe un entier k tel que n = 2k) alors n² est pair donc n² + n est pair.
Si n est impair (c'est-à-dire qu'il existe un entier k tel que n = 2k + 1) alors n² est impair (car n² = 2(2k² + 2k)+1) donc n² + n est pair. Donc, pour tout n ∈ N, n² + n est pair.
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.