Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bonjour, est ce que quelqu’un pourrait m’aider pour cette partie en mathématiques, merci beaucoup d’avance


Bonjour Est Ce Que Quelquun Pourrait Maider Pour Cette Partie En Mathématiques Merci Beaucoup Davance class=

Sagot :

Tenurf

Bonjour,

1.

[tex]u_0=6\\\\u_1=\dfrac1{2}u_0+1=\dfrac1{2}*6+1=3+1=4\\\\u_2=\dfrac1{2}u_1+1=\dfrac1{2}*4+1=2+1=3[/tex]

2.

[tex]v_0=u_0-2=4\\\\v_1=u_1-2=2\\\\v_2=u_2-2=3-2=1[/tex]

3. Cela donne l'impression que la suite [tex](v_n)[/tex] est une suite géométrique de raison 1/2

4.

Soit n entier naturel

[tex]u_n=v_n+2\\\\v_{n+1}=u{n+1}-2=\dfrac1{2}u_n+1-2\\\\=\dfrac1{2}u_n-1 =\dfrac{1}{2}v_n+1-1=\dfrac1{2}v_n\\\\\boxed{\boxed{v_{n+1}=\dfrac1{2}*v_n}}[/tex]

Notre conjecture est donc correcte, la suite [tex](v_n)[/tex] est une suite géométrique de premier terme 4 et de raison 1/2.

5.

soit n entier naturel

[tex]v_n=v_0*(\dfrac{1}{2})^n=4*(\dfrac{1}{2})^n[/tex]

d'où

[tex]u_n=2+4*(\dfrac1{2})^n[/tex]

6.

soit n entier

[tex](\dfrac1{2})^{n+1}-(\dfrac1{2})^n=(\dfrac1{2})^n * (\dfrac1{2}-1)=(\dfrac1{2})^n*(-\dfrac1{2})\\\\=-(\dfrac1{2})^n[/tex]

7.

Soit n entier

[tex]u_{n+1}-u_n=4*(\dfrac1{2^{n+1}}-\dfrac1{2^n})=-4*(\dfrac1{2})^{n+1} < 0[/tex]

La suite [tex](u_n)[/tex] est donc décroissante.

or tous les termes de la suite sont positifs, donc la suite est convergente.

Sa limite est 2.

Merci

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.