Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, est ce que quelqu’un pourrait m’aider pour cette partie en mathématiques, merci beaucoup d’avance


Bonjour Est Ce Que Quelquun Pourrait Maider Pour Cette Partie En Mathématiques Merci Beaucoup Davance class=

Sagot :

Tenurf

Bonjour,

1.

[tex]u_0=6\\\\u_1=\dfrac1{2}u_0+1=\dfrac1{2}*6+1=3+1=4\\\\u_2=\dfrac1{2}u_1+1=\dfrac1{2}*4+1=2+1=3[/tex]

2.

[tex]v_0=u_0-2=4\\\\v_1=u_1-2=2\\\\v_2=u_2-2=3-2=1[/tex]

3. Cela donne l'impression que la suite [tex](v_n)[/tex] est une suite géométrique de raison 1/2

4.

Soit n entier naturel

[tex]u_n=v_n+2\\\\v_{n+1}=u{n+1}-2=\dfrac1{2}u_n+1-2\\\\=\dfrac1{2}u_n-1 =\dfrac{1}{2}v_n+1-1=\dfrac1{2}v_n\\\\\boxed{\boxed{v_{n+1}=\dfrac1{2}*v_n}}[/tex]

Notre conjecture est donc correcte, la suite [tex](v_n)[/tex] est une suite géométrique de premier terme 4 et de raison 1/2.

5.

soit n entier naturel

[tex]v_n=v_0*(\dfrac{1}{2})^n=4*(\dfrac{1}{2})^n[/tex]

d'où

[tex]u_n=2+4*(\dfrac1{2})^n[/tex]

6.

soit n entier

[tex](\dfrac1{2})^{n+1}-(\dfrac1{2})^n=(\dfrac1{2})^n * (\dfrac1{2}-1)=(\dfrac1{2})^n*(-\dfrac1{2})\\\\=-(\dfrac1{2})^n[/tex]

7.

Soit n entier

[tex]u_{n+1}-u_n=4*(\dfrac1{2^{n+1}}-\dfrac1{2^n})=-4*(\dfrac1{2})^{n+1} < 0[/tex]

La suite [tex](u_n)[/tex] est donc décroissante.

or tous les termes de la suite sont positifs, donc la suite est convergente.

Sa limite est 2.

Merci

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.