Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonjour , pourriez vous m'aider s'il vous plait a ce dvoir de maths


Merci pour celui ou celle qui m'aidera


Bonjour Pourriez Vous Maider Sil Vous Plait A Ce Dvoir De Maths Merci Pour Celui Ou Celle Qui Maidera class=

Sagot :

Bonjour souadaitmbark45,

Rédaction intégrale :

Les explications qui suivent cette rédaction doivent bien sûr être ajoutées pour justifier les calculs.

On veut démontrer la propriété   [tex]P_n ~:~[/tex] ∀n∈N,   [tex]O A_n =\sqrt{4n + 1}[/tex] .

Initialisation :

Pour n = 0,

   Par définition, [tex]OA_0 = 1[/tex]

   et on a bien : [tex]\sqrt{4*0 +1} = \sqrt{1} = 1[/tex]

donc [tex]P_0[/tex]  est vraie.

Hérédité :

On suppose que la propriété est vraie pour un certain rang n (donc [tex]P_n[/tex] est vraie). Montrons [tex]P_{n+1}[/tex]  vraie aussi.

[tex]P_n[/tex]  est vraie, donc :

   [tex]OA_n = \sqrt{4n+1}[/tex]

⇔ [tex](OA_n)^2 = (\sqrt{4n+1})^2 = 4n+1[/tex]

⇔ [tex](OA_{n+1})^2 - 4 = 4n+1[/tex]

⇔ [tex](OA_{n+1})^2 = 4n+5[/tex]

⇔ [tex]OA_{n+1} = \sqrt{4n+5}[/tex]

On a donc démontré  [tex]P_{n+1}[/tex] vraie.

Conclusion : ∀n∈N,   [tex]O A_n =\sqrt{4n + 1}[/tex] .

Explications pour l'Hérédité et la résolution

I - Résultat attendu

Réflexe : Avant de commencer l'hérédité, il est important de cerner ce qu'on cherche à obtenir comme résultat.

Ici, on veut arriver à :  [tex]OA_{n+1}=\sqrt{4(n+1)+1}=\sqrt{4n+4+1}=\sqrt{4n+5}[/tex]

II - Arriver à ce résultat : le membre de droite

Il va falloir passer de [tex]\sqrt{4n+1}[/tex]  à [tex]\sqrt{4n+5}[/tex] et de [tex]A_n[/tex]  à [tex]A_{n+1}[/tex] .

On décide de se débarrasser des racines pour pouvoir manipuler plus facilement notre expression, pour cela on élève au carré :

   [tex]OA_n = \sqrt{4n+1}[/tex]

⇔ [tex](OA_n)^2 = (\sqrt{4n+1})^2 = 4n+1[/tex]

III - Arriver à ce résultat : le membre de gauche

Pour passer de [tex]A_n[/tex]  à [tex]A_{n+1}[/tex] , on cherche une relation liant les deux.

Réflexe : utiliser toutes les données de l'énoncé.

1) Ici, on n'a pas utilisé [tex]A_0A_1 = A_1A_2 = ... = 2[/tex] .

On peut réécrire ça sous la forme : [tex]A_nA_{n+1} = 2[/tex]

On a alors : [tex]A_{n+1} = \frac{2}{A_n}[/tex]  ce qui est trop compliqué à utiliser dans notre cas.

2) On n'a pas non plus utilisé le fait que les triangles soient rectangles.

Cette information nous permet d'appliquer le théorème de Pythagore pour trouver un lien entre [tex]A_n[/tex]  et [tex]A_{n+1}[/tex] .

J'ai mis en pièce jointe le schéma avec deux triangles mis en valeur (rouge et vert).

Interprétation :

  si n=1, alors [tex]A_n = A_1[/tex]  et  [tex]A_{n+1}=A_2[/tex]    (triangle rouge)

  si n=2, alors [tex]A_n = A_2[/tex] et  [tex]A_{n+1}=A_3[/tex]    (triangle vert)

  etc.

Dans tous les cas, [tex]OA_n[/tex] est la hauteur du triangle et  [tex]OA_{n+1}[/tex] l’hypoténuse.

[tex]A_nA_{n+1}[/tex]  est la base de notre triangle.

Ainsi, d'après le théorème de Pythagore :

   [tex](OA_{n+1})^2 = (OA_n)^2 + (A_nA_{n+1})^2[/tex]

Or, [tex]A_nA_{n+1} = 2[/tex]  ∀n∈N , d'où :

   [tex](OA_{n+1})^2 = (OA_n)^2 + 2^2 = (OA_n)^2 + 4[/tex]

⇔ [tex](OA_n)^2 = (OA_{n+1})^2 - 4[/tex]

On dispose de tous les éléments pour résoudre la récurrence.

Récapitulatif :

   1) On élève au carré pour se débarrasser de la racine

   2) On remplace [tex](OA_n)^2[/tex]  en faisant apparaitre [tex]A_{n+1}[/tex]

   3) On revient à la racine pour trouver le résultat final attendu

Remarque : On travaille ici avec des nombres tous strictement positifs, ce qui explique que l'on puisse appliquer la racine carré.

Notation :

∀n∈N : pour tout n appartenant à l'ensemble des entiers naturels

N'hésite pas à demander plus de détails,

Bonne journée

View image NePaniquezPas
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.