Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Démontrer que pour tout entier naturel n, 4" ≥ 1 + 3n.

Sagot :

Réponse :

Explications étape par étape :

Bonjour,

On fait un raisonnement par récurrence

Spot (Pn) la propriété 4" ≥ 1 + 3n.

Initialisation

Pour n = 0 ; 4^n = 1 et 1 + 3n = 1
donc 4^0 >= 1 + 3X 0
La propriété est vraie pour n = 0

Hérédité
Admettons (Pn) vraie , montrons qu'alors (Pn+1) vraie

(Pn) vraie : 4" ≥ 1 + 3n

on multiplie par 4
                 4^n X 4 >= 4(1 + 3n)
                 4^(n+1) >=  4 + 12n
1 +3(n+1) = 4 + 3n

Comparons (4 + 12n) et (2 + 3n)
(4 + 12n) - (4 + 3n)
= 4 + 12n - 4 - 3n =  9n > 0
Donc (4 + 12n) >= (4 + 3n)
         (4 + 12n) >= 1 +3(n+1)  
On a donc 4^(n+1) >=  4 + 12n >= 1 +3(n+1)  
soit 4^(n+1)  >= 1 +3(n+1)
Donc si  4" ≥ 1 + 3n alors 4^(n+1)  >= 1 +3(n+1)
L'hérédité est vérifiée

La propriété est héréditaire et vraie pour n = 0; elle est donc vraie pour tout entier natirel n

Conclusion : Pour tout entier naturel n, 4" ≥ 1 + 3n.

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.