Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.
Sagot :
Bonjour !
- Initialisation : pour n = 0
[tex] {0}^{3} - 0 = 0[/tex] est divisible par 3 car 0 est divisible par tous les nombres.
La propriété est initialisée.
- Hérédité :
On suppose que [tex] {n}^{3} - n[/tex] est divisible par 3. (HR)
Montrons que c'est vrai au rang n+1, c'est à dire [tex] {(n+1)}^{3} - (n+1)[/tex] est divisible par 3.
[tex] {(n + 1)}^{3}-(n+1) = {n}^{3} + 3 {n}^{2} + 3n + 1 - (n + 1)[/tex]
[tex] = {n}^{3} + 3 {n}^{2} + 3n - n[/tex]
[tex] = {n}^{3} - n + 3 {n}^{2} + 3n[/tex]
[tex]=\underbrace{n^3-n}_{divisible\ par\ 3\ d'apr\grave{e}s\ (HR)} +\underbrace{3(n^2+n)}_{divisible\ par\ 3}[/tex]
Si A et B sont divisibles par 3, alors A+B l'est aussi.
On a donc [tex] {n+1}^{3} - (n+1)[/tex] divisible par 3.
La propriété est héréditaire.
- Conclusion :
La propriété est initialisée et héréditaire.
[tex]\forall n\in \mathbb{N}, {n}^{3} - n[/tex] est divisible par 3.
Bonne soirée
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.