Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Bonjour !
- Initialisation : pour n = 0
[tex] {0}^{3} - 0 = 0[/tex] est divisible par 3 car 0 est divisible par tous les nombres.
La propriété est initialisée.
- Hérédité :
On suppose que [tex] {n}^{3} - n[/tex] est divisible par 3. (HR)
Montrons que c'est vrai au rang n+1, c'est à dire [tex] {(n+1)}^{3} - (n+1)[/tex] est divisible par 3.
[tex] {(n + 1)}^{3}-(n+1) = {n}^{3} + 3 {n}^{2} + 3n + 1 - (n + 1)[/tex]
[tex] = {n}^{3} + 3 {n}^{2} + 3n - n[/tex]
[tex] = {n}^{3} - n + 3 {n}^{2} + 3n[/tex]
[tex]=\underbrace{n^3-n}_{divisible\ par\ 3\ d'apr\grave{e}s\ (HR)} +\underbrace{3(n^2+n)}_{divisible\ par\ 3}[/tex]
Si A et B sont divisibles par 3, alors A+B l'est aussi.
On a donc [tex] {n+1}^{3} - (n+1)[/tex] divisible par 3.
La propriété est héréditaire.
- Conclusion :
La propriété est initialisée et héréditaire.
[tex]\forall n\in \mathbb{N}, {n}^{3} - n[/tex] est divisible par 3.
Bonne soirée
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.