Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

bjr svp quelqun pourrait m expliquer cette exercice j ai du mal a la premiere question . je suis en terminale merci d avance ​

Bjr Svp Quelqun Pourrait M Expliquer Cette Exercice J Ai Du Mal A La Premiere Question Je Suis En Terminale Merci D Avance class=

Sagot :

Tenurf

Bonjour,

Regardons les premiers termes de la suite

[tex]\textbf{somme de 1 terme}\\u_1=\dfrac1{\sqrt{1+1}}=\dfrac1{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\\\\\textbf{somme de 2 termes}\\u_2=\dfrac1{\sqrt{2+1}}+\dfrac1{\sqrt{2+2}}=\dfrac1{\sqrt{3}}+\dfrac{1}{2}\\\\\textbf{somme de 3 termes}\\u_3=\dfrac1{\sqrt{3+1}}+\dfrac1{\sqrt{3+2}}+\dfrac1{\sqrt{3+3}}\\\\\textbf{somme de n termes}\\u_n=\dfrac1{\sqrt{n+1}}+...+\dfrac1{\sqrt{n+k}}+...+\dfrac1{\sqrt{n+n}}\\\\[/tex]

Pour tout k entier compris entre 1 et n

[tex]0\leq n+1\leq n+k\leq n+n[/tex]

Comme la fonction racine carrée est croissante sur son domaine de définition

[tex]\sqrt{n+1}\leq \sqrt{n+k} \leq \sqrt{n+n}=\sqrt{2n}[/tex]

Et comme la fonction inverse est décroissante sur IR+*

[tex]\dfrac{1}{\sqrt{n+1}} \geq \dfrac{1}{\sqrt{n+k}}\geq \dfrac{1}{\sqrt{2n}}[/tex]

Comme nous avons n termes, on en déduit

[tex]\displaystyle u_n=\sum_{k=1}^{k=n}\dfrac{1}{\sqrt{n+k}}\geq \dfrac{n}{\sqrt{2n}}\\\\ \dfrac{n}{\sqrt{2n}}=\sqrt{\dfrac{n^2}{2n}}=\sqrt{\dfrac{n}{2}}[/tex]

d'où le résultat.

2.

En appliquant le théorème de comparaison, en remarquant que

[tex]\displaystyle \lim_{n \to +\infty}\sqrt{\dfrac{n}{2}}=+\infty[/tex]

la suite

[tex](u_n)[/tex]

est divergente.

Merci