Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour besoin d'aide pour cette exercice svp.
Démontrer par récurrence que pour tout entier naturel n inférieur ou egal à 1:
Σ k^2 (n au dessus et k=0 en bas) = n(n+1)(2n+1)/6

Merci d'avance.


Sagot :

caylus

Réponse :

Bonjour,

Explications étape par étape :

1) Initialisation:

si n=0 alors 0²=0=0*(0+1)*(2*0+1)/6

2) Hérédité

[tex]\displaystyle \sum_{k=0}^{n+1}\ k^2=\sum_{k=0}^{n}\ k^2+ (n+1)^2\\\\=\frac{n(n+1)(2n+1)}{6} +(n+1)^2\\\\=(n+1)*(\dfrac{n*(n+1)}{6}+(n+1))\\ \\=(n+1)*\dfrac{2n^2+7n+6}{6}\\\\=\dfrac{(n+1)*(n+2)*(2n+3) }{6}\\\\=\dfrac{(n+1)*((n+1)+1)*(2(n+1)+1) }{6}\\[/tex]

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.