Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour j’ai besoin d’aide pour ce problème niveau terminale ( Vous trouverez la figure en pj)
Minimiser une aire:
On considère le point A de coordonnées (1;1). M et N sont les
points d’intersection d’une droite passant par A avec les des deux axes du repère. Le but du problème est de déterminer la position de M et de N pour que l’aire du triangle OMN soit minimale. On note x l’abscisse de M et y l’ordonnée de N.
1. Exprimer y en fonction de x .
2. On appelle f la fonction exprimant l’aire du triangle OMN en fonction de x. Déterminer l’expression algébrique f (x). Préciser l’intervalle d’étude de la fonction f .
3. Procéder à l’étude de la fonction sur cet intervalle puis conclure.


Bonjour Jai Besoin Daide Pour Ce Problème Niveau Terminale Vous Trouverez La Figure En Pj Minimiser Une Aire On Considère Le Point A De Coordonnées 11 M Et N So class=

Sagot :

Réponse :

Bonjour, je te propose une solution

Explications étape par étape :

1) Soient les points B et C les projetés de A sur les axes

B(1;0 ) et C(0; 1)les coordonnées de M (x; 0 ) avec x>1

les triangles  NCA et ABM sont semblables donc NC/AB=CA/BM

soient NC/1=1/(x-1) donc NC=1/(x-1) donc ON=1+1/(x-1)=x/(x-1)

2) l'aire du triangle OMN=OM*ON/2  avec OM=x et ON=x/(x-1)

on remplace f(x)=x²/[2(x-1)]

intervalle d'étude de f(x)  ]1; +oo[  car x doit être>1.

3)Etude de f(x)

Limites:

si x tend vers1+ , f(x) tend vers 1/0+=+oo

si x tend vers +oo , f(x) tend vers +oo

Dérivée:

f'(x)=[2x*(2x-2)-2*x²]/4(x-1)²=(2x²-4x)/4(x-1)²=(x²-2x)/2(x-1)²

f'(x)=0 si x²-2x=0 soit x(x-2)=0

solution x=2 la solution x=0 est exclue car x doit être >1

Tableau de signes de f'(x) et de variations de f(x)

x     1                               2                             +oo

f'(x)           -                     0            +

f(x)  +oo     décroît       f(2)      croît                +oo

L'aire est minimale pour x=2 donc  pour OM=2 et ON=2

OMN est un triangle isocèle d'aire 2u.a.

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.