Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour, j’ai besoin d’aide sur cette exercice.

Soit la fonction f définie sur R* par f(x)=e^-x/x

1. Étudier les variations de f sur R*

2. Déterminer une équation de la tangente à C au point d’abscisse 1

Merci d’avance


Sagot :

Réponse :

Explications étape par étape :

Bonjour

1)
f(x) = e^-x / x
Df = R*
f de la forme U/V
avec U = e^-x soit U' = -e^-x et V = x soit V' = 1
f'(x) = (U'V -UV') / V²

f'(x) = [ (-e^-x )x -  e^-x] / x²
f'(x) = e^-x ( -x - 1) /x²

e^-x> 0 et x²>0 donc f'(x) du signe de (-x - 1)

D'ou le tableau de variation

x        -inf                        -1                                        0                   + inf        

f'(x)                 +               0                  -                     II           -

f(x)             croissante    -e        décroissante          II             décroissante

2) Equation de la tangente
(T) : y = f'(a)(x-a) + f(a)
f'(1) = -2e^-1==-2/e
f(1) = e^-1=1/e
(T)  : y =--2/e ( x-1) + 1/e
(T) :  y = -2/e x + 3/e

Vérification graphique jointe

View image ngege83
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.