Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
Bonjour !
Merci de penser à la politesse lorsque tu poses une question !
Soit [tex]n\in \mathbb{N}[/tex].
Par disjonction de cas :
- Si [tex]n=2k[/tex], [tex]k\in \mathbb{N}[/tex] :
[tex]2k(2k + 1) \\ = 4 {k}^{2} + 2k \\ = \red{\underline{2}}(2 {k}^{2} + k)[/tex]
On peut mettre 2 en facteur.
Le nombre est divisible par 2.
- Si [tex]n=2k+1[/tex], [tex]k\in \mathbb{N}[/tex] :
[tex](2k + 1)(2k + 1 + 1) \\ = (2k + 1)(2k + 2) \\ = \red{\underline{2}}(2k + 1)(k + 1)[/tex]
On peut mettre 2 en facteur.
Le nombre est divisible par 2.
- Conclusion :
Pour tout [tex]n\in \mathbb{N}[/tex], [tex]n(n+1)[/tex] est divisible par 2.
Bonne soirée
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.