Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Bonjour j'aurais besoin d'aide pour cet exercice si possible dans l'entièreté. je vous en serais vraiment reconnaissant c'est pour des révisions avant la terminale. Merci beaucoup d'avance

cordialement William.​


Bonjour Jaurais Besoin Daide Pour Cet Exercice Si Possible Dans Lentièreté Je Vous En Serais Vraiment Reconnaissant Cest Pour Des Révisions Avant La Terminale M class=

Sagot :

Bonjour,

1) Taux d'évolution :

(Vf - Vi)/Vi × 100 = (421,8 - 386,7)/386,7 × 100

                           = 9,1 %

2) U₁ = 1,045U₀ = 1,045 × 459,6 = 480,3

U₂ = 1,045U₁ = 1,045 × 480,3 = 501,9

b) Uₙ₊₁ = 1,045Uₙ ⇒ Il s'agit d'une suite géométrique de raison 1,045

c) 2017 + n = 2022 ⇔ n = 2022 - 2017 = 5

Uₙ = U₀ × qⁿ = 459,6 × 1,045ⁿ

U₅ = 459,6 × 1,045⁵ = 572,7 ⇒ donc 572,7 Md d'€ en 2022

3) def nombre_années():

          n = 0

          u = 459,6

          while n =<550

                    n = n + 1

                    u = 1,045u

         return(n)

b) Je te laisse le faire à l'aide du programme Python ci-dessus.

Je vais le résoudre par le calcul :

   459,6 × 1,045ⁿ > 550

     ⇔   1,045ⁿ > 550/459,6

     ⇔  nln(1,045) > ln(550/459,6)

     ⇔ n > ln(550/459,6)/ln(1,045)

     ⇔ n > 4,07

Donc pour n = 5 soit en 2017 + 5 = 2022

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.