Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.


Juliette fait du tourisme à Paris et visite cet après-midi
le quartier d'affaires de la Défense. Elle a tout de suite
remarqué la Grande Arche qui a la forme d'un cube évidé.
Justement, vous allez chercher les nombres dont le triple est
strictement inférieur au tiers du cube. Soit x un tel nombre.
. Son triple est......... ..................son cube est
et le tiers de son cube est
..........
L'inéquation qui traduit « tiers du cube » s'écrit donc:
• En multipliant les deux membres par 3, on obtient :
• En ajoutant - x³ aux deux membres, cela s'écrit:


Sagot :

Bonjour, voici la réponse à ton exercice :

On cherche les nombres dont le triple est strictement inférieur au tiers du cube.

Sachant que, posant [tex]x[/tex] :

· Son triple est [tex]3x[/tex]

· Son cube est [tex]x^3[/tex]

· Le tiers de son cube est [tex]\frac{x^3}{3}[/tex]

On aura donc l'inéquation :

[tex]3x < \frac{x^3}{3}[/tex]

⇔ [tex]9x < x^3[/tex]

⇔ [tex]- x^3 + 9x < 0[/tex]

On souhaite donc résoudre cette inéquation, on aura donc :

[tex]- x^3 + 9x < 0[/tex]

⇔ [tex]x(- x^2 + 9) < 0[/tex]

⇔ [tex]x < 0 \ ou \ - x^2 + 9 < 0[/tex]

⇔ [tex]x < 0 \ ou \ x^2 > 9[/tex]

⇔ [tex]x < 0 \ ou \ x > \±3[/tex]

En espérant t'avoir aidé au maximum !