Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

EXERCICE 12 : Soit x un réel. Après avoir déterminée les valeurs interdites et simplifié la somme de quotients suivante, résoudre l’équation sur R.

EXERCICE 12 Soit X Un Réel Après Avoir Déterminée Les Valeurs Interdites Et Simplifié La Somme De Quotients Suivante Résoudre Léquation Sur R class=

Sagot :

Réponse :

Bonjour

Règle: un quotient D/d est nul si son dividende (D) est nul avec son diviseur (d) non nul. (La )ou les valeurs qui annulent le diviseur sont des valeurs interdites qui ne peuvent pas être solutions de l'équation.

Explications étape par étape :

(x-1)/x=0

impose x différent de 0

il reste à résoudre x-1=0 soit x=1

*********

(2x-4)(x-3)/(2x-1)=0

2x-1 différent de 0 soit x différent de 1/2

ensuite on résout (2x-+4)((x-3)=0 (produit de facteurs voir programme de 4ème)

solutions 2x-4=0  ou x-3=0

                x=2        et x=3

***************

x(x-2)/(2x-4) =[x(x-2)]/[2(x-2)]

je peux simplifier par (x-2) après avoir posé la condition x différent de 2

il me reste comme solution unique x=0

**************

on note que x²-2x+1 =(x-1)² identité remarquable.

donc (x²-2x+1)/(x-1)=(x-1)²/(x-1)

la solution x=1 annule  le dividende et  le diviseur elle est donc interdite

par conséquent l'équation n'a pas de solution.

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.