Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour, j'ai vraiment besoin d'aide pour mon exercice de math car je ne comprends rien. Si quelqu'un pourrait m'aider ce serait gentil. Merci d'avance

Bonjour Jai Vraiment Besoin Daide Pour Mon Exercice De Math Car Je Ne Comprends Rien Si Quelquun Pourrait Maider Ce Serait Gentil Merci Davance class=

Sagot :

bonjour

     1)

f(x) = (x²+ x - 2) / (2x + 1)           D = R - {-1/2}

              (l'asymptote verticale a pour équation : x = -1/2)

on divise (x² + x - 2) par (2x + 1)

           x²   +   x         -  2        |_ 2x + 1 __

     -  ( x²   + (1/2)x )                    (1/2)x + 1/4

     ----------------------

          0    + (1/2)x    -  2      

             - (  (1/2)x    +  1/4 )

         ------------------------------

                             -2 - 1/4

                               (-9/4)

f(x) = (1/2)x + 1/4  + [(-9/4)/(2x + 1)]

f(x) = (1/2)x + 1/4 - 9/[4(2x + 1)]

l'asymptote oblique a pour équation  y = (1/2)x + 1/4

(quand x  ->  ±∞   l'expression 9/[4(2x + 1)]  ->  0

pour savoir si la courbe est au dessus ou en dessous de l'asymptote oblique on étudie le signe de la différence des ordonnées pour une valeur donnée de la variable

ordonnée point courbe - ordonnée point asymptote = - 9/[4(2x + 1)]

    x                                                 -1/2

2x + 1                         -                      0                             +

- 9/[4(2x + 1)]             +                      ||                              -

                        courbe au dessus          courbe en dessous

View image jpmorin3
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.