Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonjour, j'ai vraiment besoin d'aide pour mon exercice de math car je ne comprends rien. Si quelqu'un pourrait m'aider ce serait gentil. Merci d'avance

Bonjour Jai Vraiment Besoin Daide Pour Mon Exercice De Math Car Je Ne Comprends Rien Si Quelquun Pourrait Maider Ce Serait Gentil Merci Davance class=

Sagot :

bonjour

     1)

f(x) = (x²+ x - 2) / (2x + 1)           D = R - {-1/2}

              (l'asymptote verticale a pour équation : x = -1/2)

on divise (x² + x - 2) par (2x + 1)

           x²   +   x         -  2        |_ 2x + 1 __

     -  ( x²   + (1/2)x )                    (1/2)x + 1/4

     ----------------------

          0    + (1/2)x    -  2      

             - (  (1/2)x    +  1/4 )

         ------------------------------

                             -2 - 1/4

                               (-9/4)

f(x) = (1/2)x + 1/4  + [(-9/4)/(2x + 1)]

f(x) = (1/2)x + 1/4 - 9/[4(2x + 1)]

l'asymptote oblique a pour équation  y = (1/2)x + 1/4

(quand x  ->  ±∞   l'expression 9/[4(2x + 1)]  ->  0

pour savoir si la courbe est au dessus ou en dessous de l'asymptote oblique on étudie le signe de la différence des ordonnées pour une valeur donnée de la variable

ordonnée point courbe - ordonnée point asymptote = - 9/[4(2x + 1)]

    x                                                 -1/2

2x + 1                         -                      0                             +

- 9/[4(2x + 1)]             +                      ||                              -

                        courbe au dessus          courbe en dessous

View image jpmorin3
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.