Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Adossé à sa maison, Jean possède un jardin de forme rectan-
gulaire ayant pour dimensions 9 m et 5 m.
Il souhaite construire sur trois des côtés de ce jardin une allée ayant la même largeur et il plantera de la pelouse sur le reste du jardin. Il propose le schéma ci-dessous où la partie hachurée est l'espace de la pelouse
Quelle doit-être la largeur de l'allée pour que l'ensemble de
la pelouse ait une surface de 10 m²?


Adossé À Sa Maison Jean Possède Un Jardin De Forme Rectan Gulaire Ayant Pour Dimensions 9 M Et 5 M Il Souhaite Construire Sur Trois Des Côtés De Ce Jardin Une A class=

Sagot :

Bonjour,

Le petit rectangle (hachuré) a pour dimensions:

Sa longueur de  9-2x et une largeur de 5-x.

donc aire rectangle L x l

A= (9-2x)(5-x) = 45- 9x-10x + 2x²

A= 2x²-19x+45

Surface de la pelouse= 10 m²

2x²-19x+45= 10

2x²-19x+45-10= 0

2x²-19x+35= 0

Résoudre donc cette équation:

Δ= b²-4ac= (-19)²-4(2)(35)= 81    ***utilise une calculette

donc Δ > 0 , 2 racines:

x1= (-b-√Δ)/2a= (-(-19)-√81)/(2*2)= (19-9)/4 = 5/2= 2.5     ****√81= 9

x2= (-b+√Δ)/2a= (-(-19)+√81)/(2*2)= (19+9)/4= 7

Une seule possibilité pour  que la surface de la pelouse soit égale à 10 m² avec une largeur du jardin qui mesure 2.5 m.

bonjour

jardin : 9 m et 5 m    

• aire de la pelouse

    longueur : 9 - 2x

    largeur : 5 - x

            Aire : (9 - 2x)(5 -x)

(9 - 2x)(5 - x) = 45 - 9x - 10 x + 2x²

                     = 2x² - 19x + 45

on veut que cette aire soit égale à 10 m²

      2x² - 19x + 45 = 10            on résout cette équation

      2x² - 19x + 35 = 0

 Δ = b² − 4ac = (-19)² - 4*2*35 = 361 - 280 = 81 = 9²

il y a deux solutions

  x1 = (19 - 9)/4 = 10/4 =5/2 = 2,5

  x2 = (19 + 9)/4 = 28/4 = 7

la solution 7 m , trop grande, est à éliminer

reste 2,5 m

les dimensions de la pelouse sont alors

 9 - 2*2,5 = 9 - 5 = 4 (m)

 5 - 2,5 = 2,5 (m)

           4*2,5 = 10

son aire est bien 10 m²

réponse :

largeur de l'allée  2,5 m

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.