Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Exercice 2:
Soit fune fonction définie sur l'intervalle [0,7; 6].
On suppose que fest dérivable sur [0,7;6].
La fonction dérivée de la fonction fest notée f'.
Partie A. Étude graphique
On a représenté la fonction f sur le graphique ci-contre.
1. La tangente au point d'abscisse 3 à la courbe représentative de f
passe par les points A(3; 4) et B(4;0). Calculer f'(3).
2. D'après le graphique ci-contre,
donner le signe de f'(x) suivant les valeurs de x appartenant à l'intervalle [0,7; 6].
Partie B. Étude théorique
On admet que la fonction f est définie sur [0,7; 6] par : f(x)=(x-2x + 1)e-2x+6
1.Démontrer que pour tout x dans [0,7; 6], on a f(x) ≥ 0.
9876543
8+
7+
6+
5+
4+
3-
2-
27
1+
B
0 1 2 3 4 5 6
2. Montrer que pour tout x dans [0,7; 6], on a f'(x)=(-2x²+ 6x-4)e-2x+6
3. Étudier le signe de la fonction f' sur l'intervalle [0,7; 6]
et dresser le tableau de variation def sur [0,7; 6].
4. Vérifier le résultat du 1) de la partie A puis déterminer l'équation réduite de la tangente au point A d'abscisse 3
Pourriez vous m’aider pour cette exercice s’il vous plaît ?
