Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
Soit ABC un triangle. On appelle O le point d'intersection des médiatrices des côtés du triangle. Ce point est le centre du cercle circonscrit au triangle ABC.
On note K le milieu de [BC]. On appelle M le point défini par : OM=OA+OB+ OC.
1. Montrer que OB + OC = 2 OK.
d'après la relation de Chasles
vec(OB) + vec(OC) = vec(OK) + vec(KB) + vec(OK) + vec(KC)
= 2 x vec(OK) car vec(KB) + vec(KC) = 0 K milieu de (BC)
on obtient vec(OB) + vec(OC) = 2vec(OK)
2. Montrer que AM = OB+OC.
d'après la relation de Chasles
vec(AM) = vec(AO) + vec(OM)
= vec(AO) + vec(OA) + vec(OB) + vec(OC)
= - vec(AO) + vec(OA) + vec(OB) + vec(OC)
= vec(OB) + vec(OC)
donc vec(AM) = vec(OB) + vec(OC)
3. Que peut-on en déduire pour les vecteurs AM et OK?
puisque vec(OB) + vec(OC) = 2vec(OK) et vec(AM) = vec(OB) + vec(OC)
donc vec(AM) = 2vec(OK) on en déduit donc que les vecteurs AM et OK sont colinéaires
4. Montrer que la droite (AM) est la hauteur du triangle issue de A.
puisque les vecteurs AM et OK sont colinéaires donc les droites (AM) et (OK) sont parallèles et puisque (OK) est perpendiculaire car OK étant la médiatrice de (BC) donc la droite (AM) est perpendiculaire à (BC) donc (AM) est la hauteur du triangle ABC issue de A
5. On admet que par symétrie, la droite (BM) est la hauteur du triangle issue de B, et la droite (CM) est la hauteur issue de C. Quel point remarquable du triangle ABC est le point M?
le point remarquable M du triangle ABC qui est le point de concours des hauteurs donc M est l'orthocentre
Explications étape par étape :
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.