Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.


[tex] g(x) = \frac{3x + 4x}{(x + 1) {}^{2} } [/tex]
Démontre que quelque soit x appartient à Dg;
g'(x)=
[tex] \frac{3x {}^{2} + 6x + 4}{(x + 1) {}^{2} } [/tex]


Sagot :

Tenurf

Bonjour,

Je pense que tu veux dire

[tex]g(x)=\dfrac{3x^2+4x}{x+1}[/tex]

qui est définit et dérivable sur IR\{-1}

C'est de la forme u/v, ce qui donne comme dérivée

[tex]\dfrac{u'v-uv'}{v^2}[/tex]

Pour x différent de -1

[tex]g'(x)=\dfrac{(6x+4)(x+1)-(3x^3+4x)*1}{(x+1)^2}\\\\=\dfrac{6x^2+10x+4-3x^2-4x}{(x+1)^2}\\\\=\dfrac{3x^2+6x+4}{(x+1)^2}[/tex]

Merci

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.