Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Pouvez-vous m'aider avec cette question s'il vous plait?


Pouvezvous Maider Avec Cette Question Sil Vous Plait class=

Sagot :

Tenurf

Bonjour / Hey,

Prenons / Let's take

[tex]\theta \in[/tex] [tex]]-\pi/2;\pi/2[[/tex]

[tex]tan(\theta)[/tex] is well defined and the function is [tex]C^1[/tex] / est bien définie et la fonction est  [tex]C^1[/tex]

Then we can use the following substitution / utilisons alors ce changement de variable

[tex]x=\tan(\theta)[/tex]

as below / comme ci dessous

[tex]dx =(1+tan^2(\theta) )d\theta \\ \\\displaystyle \int \dfrac{1-x^2}{(1+x^2)^2}dx=\int \dfrac{1-tan^2(\theta)}{(1+tan^2(\theta))^2}(1+tan^2(\theta))d\theta\\\\=\int \dfrac{1-tan^2(\theta)}{1+tan^2(\theta)}d\theta\\\\=\int cos(2\theta)d\theta[/tex]

Then we are ready for the last question / nous voila équipé pour affronter la dernière question

[tex]tan(0)=0\\\\tan(1)=\dfrac{\pi}{4}[/tex]

[tex]\displaystyle \int_0^1 \dfrac{1-x^2}{(1+x^2)^2}dx=\int_0^{\pi/4} cos(2\theta)d\theta\\\\=\dfrac1{2}*sin(\pi/2)-0\\\\=\dfrac1{2}[/tex]

Thanks / merci

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.