Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Dans les cas suivants, trouver une relation f et f’ indépendante de x :
a) f(x) = sin (ax + b)
b) f(x) = sin^2 x


Sagot :

Réponse :a) f'(x)² = a² (1 - f(x)²)

b) f'(x)² = 4 f(x) (1 - f(x))

Explications étape par étape :

a) on a deux fonctions : u = cos et v = ax + b

Formule des fonctions composées : ( u ° v)' = u'(v) x v'

f'(x) = -a cos(ax + b)

f'(x)² = a² cos²(ax + b) = a² (1 - sin²(ax + b) = a² (1 - f(x)²)

b) f(x) = sin²(x) donc: u = sin et v = x²

Même formule des fonctions composées :

f'(x) = 2sin (x) cos(x)

f'(x)² = 4 sin²x cos²x = 4 sin²x (1 - sin²x) = 4 f(x) (1 - f(x))  

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.