Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Dans les cas suivants, trouver une relation f et f’ indépendante de x :
a) f(x) = sin (ax + b)
b) f(x) = sin^2 x


Sagot :

Réponse :a) f'(x)² = a² (1 - f(x)²)

b) f'(x)² = 4 f(x) (1 - f(x))

Explications étape par étape :

a) on a deux fonctions : u = cos et v = ax + b

Formule des fonctions composées : ( u ° v)' = u'(v) x v'

f'(x) = -a cos(ax + b)

f'(x)² = a² cos²(ax + b) = a² (1 - sin²(ax + b) = a² (1 - f(x)²)

b) f(x) = sin²(x) donc: u = sin et v = x²

Même formule des fonctions composées :

f'(x) = 2sin (x) cos(x)

f'(x)² = 4 sin²x cos²x = 4 sin²x (1 - sin²x) = 4 f(x) (1 - f(x))