Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.
Sagot :
Réponse :
Explications étape par étape :
Bonsoir, ta fonction est particulière, car elle est constituée d'un quotient, de 2 fonctions différentes. Il existe une technique (difficile d'y penser puisqu'en cours, on ne l'apprend pas forcément), lorsqu'on est confronté à des quotients comme celui-là : Factoriser par le terme dominant, que ce soit au numérateur, et au dénominateur.
Il te faudra donc factoriser par l'exponentielle de chaque côté :
[tex]g(x) = \frac{e^x+1}{e^x-1} = \frac{e^x(1+\frac{1}{e^x}) }{e^x(1-\frac{1}{e^x}) }[/tex]
Je te l'accorde, factoriser de cette façon peut sembler abscons, mais ça permet de débloquer bon nombre de situations. En développant, tu retomberas sur ta fonction g.
Ensuite, tu peux diviser par exp(x). On peut le justifier, car pour tout x réel, la fonction exponentielle ne s'annule jamais. Il en résultera :
[tex]g(x) = \frac{1+\frac{1}{e^x} }{1-\frac{1}{e^x} }[/tex]
Tu peux le constater, la forme indéterminée ne l'est plus, tout coule de source, par quotient de limites :
[tex]\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{1+\frac{1}{e^x} }{1-\frac{1}{e^x} } = \frac{1+0}{1-0} = 1[/tex]
Conserve cette astuce dans un coin de ta tête, elle te sauvera bon nombre de fois. L'affirmation est donc fausse, g admet une asymptote d'équation y = 1 en + infini, et non -1.
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.